Shu-Wei Chang 張書維
Associate Research Fellow

Ways to contact me:

E-mail:swchangsinica.edu.tw
Phone:
Fax: 02-2787-3122
Address: Research Center for Applied Sciences, Academia Sinica
128, Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
中央研究院應用科學研究中心
台北市11529南港區研究院路二段128號

Full Curriculum Vitae, click here!!


Education:

Experience:

Research Fields:

  • Dynamic modulations of transistor lasers
  • Chiral photonics, metamaterials, plasmonics, and their applications
  • Reciprocity-based computation schemes for active cavities and photonic crystals
  • Nanometer-scale cavities
  • Group IV silicon-germanium-tin direct-bandgap materials
  • Slow light in semiconductors
  • Spintronics and spin-related photonic devices
  • Quantum-dot and quantum-well coupled systems

Recent Publications:

  1. S. T. Lin, C. Y. Chang, P. J. Cheng, M. Y. Lee, C. C. Cheng, S. W. Chang, L. C. Lee, C. W. Chu, P. K. Wei, and M. H. Shih*, "Manipulating circular dichroism of tungsten diselenide (WSe2) atomic layers with plasmonic metasurface for ultrathin circularly polarized photon sources," ACS Appl. Mater. & Inter., accepted (2018).
  2. H. C. Wang, C. H. Chu, P. C. Wu, H. H. Hsiao, H. J. Wu, J. W. Chen, W. H. Lee, Y. C. Lai, Y. W. Huang, M. L. Tseng, S. W. Chang, D. P. Tsai*, "Ultrathin planar cavity metasurface," SMALL, 1703920 (2018).
    [ DOI:10.1002/smll.201703920 ]
  3. C. T. Hsieh, S. Y. Lin, and S. W. Chang*, "Enhanced absorption due to formation of quasi-bound states in type-II coupled quantum rings," IEEE J. Sel. Top. Quantum Electron, 24, 1900307 (2018).
    [ DOI:10.1109/JSTQE.2017.2736438 ]
  4. H. A. Chen, W. H. Lin, C. Y. Chang, S. W. Chang, M. H. Shih, and S. Y. Lin*, "Type-I to type-II transformation of hybrid quantum nanostructures," IEEE J. Sel. Top. Quantum Electron, 23, 1900407 (2017).
    [ DOI:10.1109/JSTQE.2016.2629085 ]
  5. C. S. Chang, S. W. Chang*, and C. H. Wu*, "Theory for voltage modulation of transistor lasers using Franz-Keldysh absorption in the presence of optoelectronic feedback," Opt. Express, 24, 25515 (2016).
    [ DOI:10.1364/OE.24.025515 ]
  6. K. C. Chen, C. R. Wu, X. R. Chang, S. C. Lee, S. W. Chang, and S. Y. Lin*, "Enhancement of field-effect mobility in molybdenum-disulfide transistor through the treatment of low-power oxygen plasma," Jpn. J. Appl. Phys., 55 090302 (2016).
    [ DOI:10.7567/JJAP.55.090302 ]
  7. W. C. Liao, S. W. Liao, K. J. Chen, Y. H. Hsiao, S. W. Chang, H. C. Kuo*, and M. H. Shih*, "Optimized spiral metal-gallium-nitride nanowire cavity for ultra-high circular dichroism ultraviolet lasing at room temperature," Sci. Rep., 6, 26578 (2016).
    [ DOI:10.1038/srep26578 ]
  8. C. T. Hsieh, T. H. Hsieh, and S. W. Chang*, “Improving accuracy using subpixel smoothing for multiband effective-mass Hamiltonians of semiconductor nanostructures,” Comput. Phys. Commun., 201, 63 (2016).
    [ DOI:10.1016/j.cpc.2015.12.018 ]
  9. P. J. Chiang and S. W. Chang*, "Efficient photonic-crystal mode solver: eigenvalue rather than generalized eigenvalue approach," IEEE J. Sel. Top. Quantum Electron., 22, 310 (2016).
    [ DOI:10.1109/JSTQE.2015.2497333 ]
  10. H. L. Wang, Y. H. Huang, G. S. Cheng, S. W. Chang, and C. H. Wu*, "Analysis of tunable internal loss caused by Franz-Keldysh absorption in transistor lasers," IEEE J. Sel. Top. Quantum Electron., 21, 270 (2015).
    [ DOI:10.1109/JSTQE.2015.2438814 ]
  11. S. W. Chang*, "Dressed linewidth enhancement factors in small semiconductor lasers," IEEE J. Sel. Top. Quantum Electron. 21, 157 (2015).
    [ DOI:10.1109/JSTQE.2014.2359542 ]
  12. C. R. Wu, X. R. Chang, S. W. Chang, C. E. Chang, C. H. Wu, S. Y. Lin*, "Multilayer MoS2 prepared by one-time and repeated chemical vapor depositions: anomalous Raman shifts and transistors with high on/off ratio," J. Phys. D: Appl. Phys., 48, 435101 (2015).
    [ DOI:10.1088/0022-3727/48/43/435101 ]
  13. K. S. Hsu, W. C. Hung, C. C. Chang, W. H. Lin, M. H. Shih*, P. T. Lee, S. Y. Lin, S. W. Chang, and Y. C. Chang, "Lasing action and extraordinary reduction in long radiative lifetime of type-II GaSb/GaAs quantum dots using circular photonic crystal nanocavity," Appl. Phys. Lett., 107, 091113 (2015).
    [ DOI:10.1063/1.4929948 ]
  14. M. Y. Lin, C. H. Wang, S. W. Chang, S. C. Lee, and S. Y. Lin*, "Passivated graphene transistors fabricated on a millimeter-sized single-crystal graphene film prepared with chemical vapor deposition," J. Phys. D: Appl. Phys., 48, 295106 (2015).
    [ DOI:10.1088/0022-3727/48/29/295106 ]
  15. P. J. Cheng, C. H. Tien, and S. W. Chang*, "Incomplete immunity to backscattering in chiral one-way photonic crystals," Opt. Express, 23, 10327 (2015).
    [ DOI:10.1364/OE.23.010327 ]
  16. P. J. Chiang and S. W. Chang*, "Design of metal-dielectric grating lasers only supporting surface-wave-like modes," Opt. Express, 22, 27845 (2014).
    [ DOI:10.1364/OE.22.027845 ]
  17. M. Y. Lin, Y. H. Chen, C. H. Wang, C. F. Su, S. W. Chang, S. C. Lee, and S. Y. Lin*, "Field effect of in-plane gates with different gap sizes on the Fermi level tuning of graphene channels," Appl. Phys. Lett., 104, 183503 (2014).
    [ DOI:10.1063/1.4875583 ]
  18. M. Y. Lin, Y. H. Chen, C. F. Su, S. W. Chang, S. C. Lee, and S. Y. Lin*, "Fermi-level shifts in graphene transistors with dual-cut channels scraped by atomic force microscope tips," Appl. Phys. Lett., 104, 023511 (2014).
    [ DOI:10.1063/1.4862275 ]
  19. S. W. Chang*, "Bidirectionality in bianistropic but reciprocal photonic crystals and its usage in active photonics," IEEE/OSA J. Lightwave. Technol., 32, 10 (2014).
    [ DOI:10.1109/JLT.2013.2288982 ]
  20. C. T. Hsieh and S. W. Chang*, "Bound-to-continuum absorption with tunneling in type-II nanostructures: a multiband source-radiation approach," Opt. Express, 21, 30778 (2013).
    [ DOI:10.1364/OE.21.030778 ]
  21. Y. A. Liao, Y. K. Chao, S. W. Chang, W. H. Chang, J. I. Chyi, and S. Y. Lin*, "Memory device application of wide-channel in-plane gate transistors with type-II GaAsSb-capped InAs quantum dots," Appl. Phys. Lett., 103, 143502 (2013).
    [ DOI:10.1063/1.4824067 ]
  22. P. J. Cheng, C. Y. Weng, S. W. Chang, T. R. Lin*, and C. H. Tien, "Plasmonic gap-mode nanocavities with metallic mirrors in high-index cladding," Opt. Express, 21, 13479 (2013).
    [ DOI:10.1364/OE.21.013479 ]
  23. P. J. Cheng, C. Y. Weng, S. W. Chang, T. R. Lin*, and C. H. Tien, "Cladding effect on hybrid plasmonic nanowire cavity at telecommunication wavelengths," IEEE J. Sel. Top. Quantum. Electron., 19, 4800306 (2013).
    [ DOI:10.1109/JSTQE.2012.2231404 ]
  24. R. S. Moirangthem, P. J. Cheng, P. C. H. Chien, B. T. H. Ngo, S. W. Chang, C. H. Tien, and Y. C. Chang*, "Optical cavity modes of a single crystalline zinc oxide microsphere,” Opt. Express, 21, 3010 (2013).
    [ DOI:10.1364/OE.21.003010 ]
  25. P. J. Chiang and S. W. Chang*, "Frequency-domain formulation of photonic crystals using sources and gain," Opt. Express, 21, 1972 (2013).
    [ DOI:10.1364/OE.21.001972 ]
  26. S. W. Chang*, "Confinement factors and modal volumes of micro and nanocavities invariant to integration regions," IEEE J. Sel. Top. Quantum. Electron., 18, 1771 (2012).
    [ DOI:10.1109/JSTQE.2012.2193119 ]
  27. Y. Ye and S. W. Chang*, "Self-induced spin-polarized carrier source in active photonic device with artificial optical chirality," Appl. Phys. Lett., 101, 181106 (2012).
    [ DOI:10.1063/1.4765082 ]
  28. W. H. Lin, K. W. Wang, S. W. Chang, M. H. Shih, and S. Y. Lin*, "Type-II GaSb/GaAs coupled quantum rings: room-temperature luminescence enhancement and recombination lifetime elongation for device applications," Appl. Phys. Lett., 101, 031906 (2012).
    [ DOI:10.1063/1.4737443 ]
  29. T. H. Chung, W. H. Lin, Y. K. Chao, S. W. Chang, and S. Y. Lin*, "In-plane gate transistors with 40 μm wide channel width," IEEE Electron. Device Lett., 33, 1129 (2012).
    [ DOI:10.1109/LED.2012.2199735 ]
  30. S. W. Chang*, "Intra-cavity stimulated emission of photons in almost pure spin states without imposed nonreciprocity," Opt. Express, 20, 2516 (2012).
    [ DOI:10.1364/OE.20.002516 ]
  31. Y. G. Wang, S. W. Chang, C. C. Chen, C. H. Chiu, M. Y. Kuo, M. H. Shih*, and H. C. Kuo, "Room temperature lasing with high group index in metal-coated GaN nanoring," Appl. Phys. Lett., 99, 251111 (2011).
    [ DOI:10.1063/1.3671648 ]
  32. S. W. Chang, C. Y. Lu, S. L. Chuang*, T. D. Germann, U. W. Pohl, and D. Bimberg, "Theory of metal-cavity surface-emitting microlasers and comparison with experiment,” IEEE. J. Sel. Top. Quantum. Electron., 17, 1681 (2011).
    [ DOI:10.1109/JSTQE.2011.2121894 ]
  33. S. W. Chang*, "Full frequency-domain approach to reciprocal microlasers and nanolasers-perspective from Lorentz reciprocity," Opt. Express, 19, 21116 (2011).
    Also see Erattum.
    [ DOI:10.1364/OE.19.021116 ]
  34. C. Y. A. Ni, S. W. Chang, S. L. Chuang*, and P. J. Schuck, "Quality factor of nanobowtie antenna," IEEE/OSA J. Lightwave. Technol., 29, 3107 (2011).
    [ DOI:10.1109/JLT.2011.2164780 ]
  35. Y. Ye, X. Li, F. Zhuang, and S. W. Chang*, "Homogenous circular polarizers using a bilayered chiral metamaterial," Appl. Phys. Lett., 99, 031111 (2011).
    [ DOI:10.1063/1.3615054 ]
  36. C. Y. Lu, S. W. Chang, S. L. Chuang*, T. D. Germann, U. W. Pohl, and D. Bimberg, "Low thermal impedance of substrate-free metal cavity surface-emitting microlasers," IEEE Photonics Technol. Lett., 23, 1031 (2011).
    [ DOI:10.1109/LPT.2011.2132124 ]
  37. C. Y. A. Ni, S. W. Chang, D. J. Gargas, M. C. Moore, P. Yang, and S. L. Chuang*, "Metal coated zinc oxide nanocavities," IEEE J. Quantum. Electron., 47, 245 (2011).
    [ DOI:10.1109/JQE.2010.2073680 ]
  38. C. Y. Lu, S. W. Chang, S. L. Chuang*, T. D. Germann, U. W. Pohl, and D. Bimberg, "CW substrate-free metal-cavity surface microemitters at 300 K," Semicond. Sci. Technol., 26, 014012 (2011).
    [ DOI:10.1088/0268-1242/26/1/014012 ]
  39. G. E. Chang, S. W. Chang, and S. L. Chuang*, "Strain-balanced GezSn1-z-SixGey Sn1-x-y multiple-quantum-well lasers," IEEE J. Quantum Electron., 46, 1813 (2010).
    [ DOI:10.1109/JQE.2010.2059000 ]
  40. T. R. Lin, S. W. Chang, S. L. Chuang*, Z. Zhang, and P. J. Schuck, "Coating effect on optical resonance of plasmonic nanobowtie antenna," Appl. Phys. Lett., 97, 063106 (2010).
    [ DOI:10.1063/1.3478228 ]
  41. S. W. Chang, T. R. Lin, and S. L. Chuang*, "Theory of plasmonic Fabry-Perot nanolasers," Opt. Express, 18, 15039 (2010).
    [ DOI:10.1364/OE.18.015039 ]
  42. C. Y. Lu, S. W. Chang, S. L. Chuang*, T. D. Germann, and D. Bimberg, "Metal-cavity surface-emitting microlasers at room temperature," Appl. Phys. Lett., 96, 251101 (2010).
    [ DOI:10.1063/1.3455316 ]
  43. D. J. Gargas, M. C. Moore, C. Y. A. Ni, S. W. Chang, S. L. Chuang, and P. Yang*, "Whispering gallery mode lasing from zinc oxide hexagonal nanodisks," ACS. Nano., 4, 3270 (2010).
    [ DOI:10.1021/nn9018174 ]
  44. C. Y. Lu, S. W. Chang, S. H. Yang, and S. L. Chuang*, "Quantum-dot laser with a metal-coated waveguide under continuous-wave operation at room temperature," Appl. Phys. Lett., 95, 233507 (2009).
    [ DOI:10.1063/1.3272687 ]
  45. S. H. Moon, J. Park, J. M. Oh, N. J. Kim, D. Lee*, S. W. Chang, D. Nielsen, and S. L. Chuang, "Strong tunable slow and fast lights using a gain-clamped semiconductor optical amplifier," Opt. Express, 17, 21222 (2009).
    [ DOI:10.1364/OE.17.021222 ]
  46. S. W. Chang and S. L. Chuang*, "Fundamental formulation for plasmonic nanolasers," IEEE J. Quantum Electron, 45, 1014 (2009).
    [ DOI:10.1109/JQE.2009.2017210 ]
  47. G. E. Chang, S. W. Chang, and S. L. Chuang*, "Theory for n-type doped, tensile-strained Ge-SixGeySn1-x-y quantum-well lasers at telecom wavelength," Opt. Express, 17, 11246 (2009).
    [ DOI:10.1364/OE.17.011246 ]
  48. S. W. Chang and S. L. Chuang*, "Normal modes in dispersive and inhomogeneous medium," Opt. Lett., 34, 91 (2009).
    [ DOI:10.1364/OL.34.000091 ]
  49. P. K. Kondratko, A. Matsudaira, S. W. Chang, and S. L. Chuang*, "Slow and fast light in quantum-well and quantum-dot semiconductor optical amplifiers," Chinese Opt. Lett., 6, 736 (2008).
    [ DOI:10.3788/COL20080610.0736 ]
  50. S. W. Chang, C. Y. A. Ni, and S. L. Chuang*, "Theory for bowtie plasmonic nanolasers," Opt. Express, 16, 10580 (2008). [selected in Virtual Journal of Nan. Sci. & Tech., 18(8), Surface and Interface Properties]
    [ DOI:10.1364/OE.16.010580 ]
  51. S. W. Chang, S. L. Chuang*, C. J. Chang-Hasnain, and H. Wang, "Slow light using spin coherence and V-type electromagnetically induced transparency in [110] strained quantum wells" J. Opt. Soc. Am. B: Opt. Phys., 24, 849 (2007).
    [ DOI:10.1364/JOSAB.24.000849 ]
  52. P. K. Kondratko, S. W. Chang, H. Su, and S. L. Chuang*, "Optical and electrical control of slow light in p-doped and intrinsic quantum-dot electroabsorbers," Appl. Phys. Lett., 90, 251108 (2007).
    [ DOI:10.1063/1.2749861 ]
  53. H. Gotoh*, S. W. Chang, S. L. Chuang, H. Okamot, and Y. Shibata, "Tunable slow light of 1.3 μm region in quantum dots at room temperature," J. J. Appl. Phys., 46, 2369 (2007).
    [ DOI:10.1143/JJAP.46.2369 ]
  54. S. W. Chang and S. L. Chuang*, "Theory of optical gain of Ge-SixGeySn1-x-y quantum-well lasers," IEEE. J. Quantum Electron., 43, 249 (2007).
    Also see Derivation on the Hamiltonian operator of [111] L valley.
    [ DOI:10.1109/JQE.2006.890401 ]
  55. S. W. Chang, P. K. Kondratko, H. Su, and S. L. Chuang*, "Slow light based on coherent population oscillation in quantum dots at room temperature," IEEE J. Quantum Electron., 43, 196 (2007).
    [ DOI:10.1109/JQE.2006.889060 ]
  56. S. W. Chang and S. L. Chuang*, "Slow light based on population oscillation in quantum dots with inhomogeneous broadening," Phys. Rev. B, 72, 235330 (2005).
    [ DOI:10.1103/PhysRevB.72.235330 ]
  57. S. W. Chang and S. L. Chuang*, "Strain-induced enhancement of spin relaxation times in [110] and [111] grown quantum wells," Phys. Rev. B, 72, 115429 (2005). [selected in Virtual Journal of Nan. Sci. & Tech., 12(14), Nanomagnetism and Spintronics]
    [ DOI:10.1103/PhysRevB.72.115429 ]
  58. S. W. Chang, S. L. Chuang*, P. C. Ku, C. J. Chang-Hasnian, P. Palinginis, and H. Wang, "Slow light using excitonic population oscillation," Phys. Rev. B, 70, 235333 (2004). [selected in Virtual Journal of Nan. Sci. & Tech., 11(1), Optical Properties and Quantum Optics]
    [ DOI:10.1103/PhysRevB.70.235333 ]
  59. P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain*, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, "Slow light in semiconductor quantum wells," Opt. Lett., 29, 2291 (2004). [selected in Virtual Journal of Nan. Sci. & Tech., 11(7), Optical Properties and Quantum Optics]
    [ DOI:10.1364/OL.29.002291 ]
  60. S. W. Chang, S. L. Chuang*, and and N. Holonyak Jr., "Phonon- and Auger-assisted tunneling from a quantum well to a quantum dot," Phys. Rev. B, 70, 125312 (2004). [selected in Virtual Journal of Nan. Sci. & Tech., 10(14), Electronic Structure and Transport]
    [ DOI:10.1103/PhysRevB.70.125312 ]
  61. M. J. Chen, E. Z. Liang, S. W. Chang, and C. F. Lin*, "Model for band-edge electroluminescence from metal-oxide-semiconductor silicon tunneling diodes," J. Appl. Phys., 90, 789 (2001).
    [ DOI:10.1063/1.1381000 ]
  62. C. F. Lin*, M. J. Chen, S. W. Chang, P. F. Chung, E. Z. Liang, T. W. Su, and C. W. Liu "Electroluminescence at silicon band gap energy from mechanically pressed indium-tin-oxide/Si contact," Appl. Phys. Lett., 78, 1808 (2001).
    [ DOI:10.1063/1.1359138 ]